Practical Applications of Compact High-Resolution
60 MHz Permanent Magnet NMR Systems
for Reaction Monitoring and Online Process Control

Presented By

John Edwards, Ph.D.

Process NMR Associates, LLC
Danbury, Connecticut

March 22, 2011
RSC Reaction Monitoring Symposium, Sandwich, Kent, UK
High Resolution FT-NMR – Online / in Process
NMR Sample System and Placement
NMR Lock - External 7Li Lock @ 22.5 MHz

Shim DACs Built into the Magnet Enclosure

Matrix Shimming Performed by Optimizing FID RMS
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclei Observed</td>
<td>H+ (primary)</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>58±1.0 MHz for H+</td>
</tr>
<tr>
<td>Sample Tube</td>
<td>Standard laboratory glass tube</td>
</tr>
<tr>
<td></td>
<td>L: 35.5 cm O.D 8 mm - I.D 7 mm</td>
</tr>
<tr>
<td></td>
<td>Other size optional</td>
</tr>
<tr>
<td>Sample Temperature Heating</td>
<td>Controlled between 30°C – 80°C (86°F to 176°F)</td>
</tr>
<tr>
<td>Magnet System</td>
<td>Temperature stabilized, self-condensed field, permanent (neodymium)</td>
</tr>
<tr>
<td></td>
<td>magnet with integral field gradient (shim) coils and</td>
</tr>
<tr>
<td></td>
<td>automatic shim control</td>
</tr>
<tr>
<td>Field Strength</td>
<td>1.35 Tesla at 45°C</td>
</tr>
<tr>
<td>Fringe Field</td>
<td>Less than 1 gauss on external</td>
</tr>
<tr>
<td></td>
<td>enclosure of magnet</td>
</tr>
<tr>
<td>Dimensions</td>
<td>145 cm H x 106 cm W x 65 cm D</td>
</tr>
<tr>
<td></td>
<td>(57 in H x 42 in W x 26 in D)</td>
</tr>
<tr>
<td></td>
<td>Add 15 cm (6 in) to height for shipping pallet</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Self standing, wheel driven carriage</td>
</tr>
<tr>
<td>Weight</td>
<td>400 kg (882 lb) net weight</td>
</tr>
<tr>
<td></td>
<td>444 kg (980 lb) gross shipping weight</td>
</tr>
<tr>
<td>Power Requirement</td>
<td>220-240 Vac, 3500W maximum</td>
</tr>
<tr>
<td></td>
<td>110-120 Vac, 3500W maximum</td>
</tr>
<tr>
<td>Other Utilities</td>
<td>Internal Air condition system for higher stability</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Ambient Range:</td>
</tr>
<tr>
<td></td>
<td>Temperature controlled environment</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Min / Max 30%-50%</td>
</tr>
<tr>
<td>Vibration</td>
<td>Max: 0.3 mm/s² on the 3 axes</td>
</tr>
<tr>
<td>Communication</td>
<td>Local Ethernet Base - 10/100. Remote connection via modem.</td>
</tr>
</tbody>
</table>
New magnet design solves the problem of:
Long term and short term Stability
Temperature sensitivity

State of the Art electronics:
Smaller foot-print
40 Shim coils on 2 single PCB
Integrated PCB for Shim & Heater Control
Digital RF & Acquisition – improve SNR

New concept of Process Probe:
Entire sample pipe through without contact with the system
Much better temperature insulation
Higher Q (better sensitivity)

New Software:
Includes new algorithm for standard and global Models
Fully automated process capacity
Extensive remote diagnostic capabilities
Advantages and Disadvantages of NMR Applied to Process Control

<table>
<thead>
<tr>
<th>Advantages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Optical Spectroscopy</td>
</tr>
<tr>
<td>No Spectral Temperature Dependence</td>
</tr>
<tr>
<td>Minimal Sampling Requirements</td>
</tr>
<tr>
<td>Spectral Response to Sample Chemistry is Linear</td>
</tr>
<tr>
<td>Chemical Regions of NMR Spectra are Orthogonal</td>
</tr>
<tr>
<td>Entire Volume is Sampled by the RF Experiment</td>
</tr>
<tr>
<td>Water is in Distinct Region and can be digitally removed</td>
</tr>
<tr>
<td>Detailed Hydrocarbon information is readily observed</td>
</tr>
<tr>
<td>Fundamental Chemical Information Can be Derived Directly from Spectrum.</td>
</tr>
<tr>
<td>Colored/Black Samples Readily Observed Without Impact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disadvantages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids Cannot be Observed in a Liquid Stream</td>
</tr>
<tr>
<td>Individual Molecular Component Sensitivity Not Observed Directly in the Spectrum.</td>
</tr>
<tr>
<td>Low Sensitivity to Impurities – Quantitative > 500 ppm.</td>
</tr>
<tr>
<td>Sensitive to Ferromagnetics.</td>
</tr>
<tr>
<td>Sample Viscosity Causes Decrease in Resolution</td>
</tr>
<tr>
<td>Non-Hydrogen Containing Species are Not Observed (Exceptions Na, P, F, Al)</td>
</tr>
</tbody>
</table>
Application: Steam Cracking Optimization
Installed 2000
Cracker Facility Capacity: 600,000 Tonnes per Year
Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization
NMR Analysis: 3-4 Minute Cycle (Single Stream)
NMR PLS Outputs: Naphtha – Detailed PIONA
C4-C10 normal-paraffin, iso-paraffin, aromatics, naphthenes
Predicted Cyclohexane (F9 C1)

Actual Cyclohexane (Wt%)

Beta Coefficients

Spectral Units ()
Cyclopentane

Wt% over time from May to September.
96 Hours of NMR Process Output – iso-Paraffin Components
Online NMR Applications Timeline

1993 - Development of Laboratory Based process NMR Methodologies
1995 - BTU Analysis of Refinery Fuel Gas
1995 - Sulfuric Acid Strength in Emulsion Zone of Stratco Acid Alkylation Unit
1999 - Diesel Blending System
1999 - Reformer Control System
2000 - Naphtha Cracker Feed Analyzer – Full GC PIONA
2000 - Crude Unit Analyzer
2000 - Crude Blending System
2001 - Gasoline Blending System,
2001 - Base Oil Manufacturing Analyzer
2002 - FCC Unit Analyzer
Acid CH₃ Intensity
Anhydride CH₃ Intensity

Acetic Acid
Acetic Anhydride

Water
Acetic Anhydride + Methanol
Acid Catalyzed
With Shake Before Insertion
-O-CH₃

H₂O

Methyl Ester CH₃
Acetic Anhydride CH₃
Acetic Acid/Ester CH₃

Acetic Acid
Acetic Acid Ester - CH₃-CO

4 3.6 3.2 2.8 2.4 2 ppm
t-BuOH+AA
IPA+AA early in reaction before reference shift
EtOH+AA

Shifts caused by auto-referencing changes caused by intensity shifts in the methyl resonance area.
MeOH (m)
EtOH (e)
IPA (i)
t-BuOH (b)
+
AA

OH - pH shift
Acetic-ester
MeOH (m)
EtOH (e)
IPA (l)
t-BuOH (b)
+
AA
MeOH (m)
EtOH (e)
IPA (l)
t-BuOH (b)
+ AA

Acetic Acid
and Ester
Acetate CH3

OH
OH
i-ester

m ester

b ester

ppm
Methoxyketone + HO-NH₂ → 1,3-dihydro-2H-imidazol-2-one + H₂O
Microreactor Hydrogenation Reaction
Cyclohexene to Cyclohexane

Methanol
Chloroform
Cyclohexene
Cyclohexane

13C Satellites do not interfere
Continuous Flow (10 ml/min).
Starting Cyclohexane concentration 0.08 gm/18 ml MeOH.
Final Cyclohexane concentration 0.4 gm in 18 ml MeOH.
Cyclohexane was added in 0.01 gm increments every 12 seconds with no mixing.
Total run time: 9 minutes.
19F NMR at 54.6 MHZ
LWHH=3 Hz
Acknowledgements

Paul Giammatteo – PNA

Qualion NMR – Israel

Tal Cohen – ASPECT Italia

Leonid Grunin – Resonance Systems, Russia

Mark Zell – Pfizer – Groton CT