Aluminum (Al) is the third most abundant element and the most abundant element found in the Elemin™ (®) (FutureCeuticals Inc., Monmouth, IL USA) is a multi-element nutritional supplement that contains more than 70 trace elements and minerals all of which are completely water soluble, including all 18 amino acids. The objective of this study is to develop a methodology to identify adulteration of the product. We wanted to observe if Al(OH)₃ was utilized as the chemical shift reference for the experiments. The aluminon solution was utilized as the calibrations were obtained from fully dissolved species. The liquid-state ¹⁷O NMR spectra are shown in Figure 2. For the solid-state ¹⁷O NMR, we observed the signal at 0 ppm and the signal intensity varied by less than 1% of the absolute signal. This indicates that there are no significant differences in the three samples. The aluminon solution was dissolved in D₂O, and the ¹⁷O NMR signal intensity was observed at 0 ppm. The signal intensity was observed at 0 ppm in all three samples. The aluminon solution was also dissolved in D₂O, and the ¹⁷O NMR signal intensity was observed at 0 ppm. The signal intensity was observed at 0 ppm in all three samples.

To investigate the sample stability of the elemin product the samples were exposed to 5°C and 20°C, 5% relative humidity, and 20°C and 80% relative humidity for 6 months. The sample stability study was performed to determine the stability of the elemin product. The sample stability study was performed to determine the stability of the elemin product. The sample stability study was performed to determine the stability of the elemin product. The sample stability study was performed to determine the stability of the elemin product. The sample stability study was performed to determine the stability of the elemin product.

Temperature Study: To investigate the sample stability of the elemin product the samples were exposed to 5°C and 20°C, 5% relative humidity, and 20°C and 80% relative humidity for 6 months. The sample stability study was performed to determine the stability of the elemin product. The sample stability study was performed to determine the stability of the elemin product. The sample stability study was performed to determine the stability of the elemin product. The sample stability study was performed to determine the stability of the elemin product.

Results: The ¹⁷O NMR was obtained on the samples but two samples failed to yield a detectable signal — these samples were Al₂O₃ and Al₂O₃. The solid-state ¹⁷O NMR was used to observe the signal at 0 ppm. The solid-state ¹⁷O NMR was used to observe the signal at 0 ppm. The solid-state ¹⁷O NMR was used to observe the signal at 0 ppm. The solid-state ¹⁷O NMR was used to observe the signal at 0 ppm.

The calculated aluminum content of 2.41 wt% is in good agreement with the ICP result (2.66 wt%) which is a strong indicator that all the Al in the sample is in soluble form as the presence of a soluble aluminum species in the sample was confirmed. The calculated aluminum content of 2.41 wt% is in good agreement with the ICP result (2.66 wt%) which is a strong indicator that all the Al in the sample is in soluble form as the presence of a soluble aluminum species in the sample was confirmed. The calculated aluminum content of 2.41 wt% is in good agreement with the ICP result (2.66 wt%) which is a strong indicator that all the Al in the sample is in soluble form as the presence of a soluble aluminum species in the sample was confirmed. The calculated aluminum content of 2.41 wt% is in good agreement with the ICP result (2.66 wt%) which is a strong indicator that all the Al in the sample is in soluble form as the presence of a soluble aluminum species in the sample was confirmed.

To further confirm that insoluble Al is not present we decided to perform the solid-state ¹⁷O NMR to see if signals from Al in the soluble form rather than just observing the signals from the aluminum nitride. The peaks observed in the liquid state ¹⁷O NMR are generally of lower intensity and it was found that the peak intensity was greater than 2.6 ppm. The observed signal intensity varied by less than 1% of the absolute signal. This indicates that there are no significant differences in the three samples. The aluminon solution was also dissolved in D₂O, and the ¹⁷O NMR signal intensity was observed at 0 ppm. The signal intensity was observed at 0 ppm in all three samples. The aluminon solution was dissolved in D₂O, and the ¹⁷O NMR signal intensity was observed at 0 ppm. The signal intensity was observed at 0 ppm in all three samples. The aluminon solution was also dissolved in D₂O, and the ¹⁷O NMR signal intensity was observed at 0 ppm. The signal intensity was observed at 0 ppm in all three samples. The aluminon solution was dissolved in D₂O, and the ¹⁷O NMR signal intensity was observed at 0 ppm. The signal intensity was observed at 0 ppm in all three samples. The aluminon solution was also dissolved in D₂O, and the ¹⁷O NMR signal intensity was observed at 0 ppm. The signal intensity was observed at 0 ppm in all three samples.